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Abstract 
Supervisory control can be used to optimize the HVAC system operation and achieve building 
energy conservation, while reinforcement learning (RL) is considered as a promising model-free 
supervisory control method. In this paper, we apply RL algorithm to the operation optimization of 
air-conditioning (AC) system and propose an innovative RL-based model-free control strategy 
combining rule-based and RL-based control algorithm as well as complete application process. 
We use a variable air volume (VAV) air-conditioning system for a single-storey office building as a 
case study to validate the optimization performance of the RL-based controller. We select control 
strategies with the rule-based control controller (RBC) and proportional-integral-derivative (PID) 
controller respectively as the reference cases. The results show that, for the air supply of single 
zone, the RL controller performs the best in terms of both non-comfortable time and energy costs 
of AC system after one-year exploration learning. The total energy consumption of AC system 
reduced by 7.7% and 4.7%, respectively compared with RBC and PID strategies. For the air supply 
of multi-zone, the performance of RL controller begins to outperform the reference strategies 
after two-year exploration learning and two-year buffer stage. From the seventh year on, RL 
controller performs much better in terms of both non-comfortable time and operating costs of AC 
system, while the operating cost of AC system is reduced by 2.7% to 4.6% compared with the 
reference strategies. In addition, RL controller is more suitable for small-scale operation optimization 
problems. 
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1 Introduction 

Building sectors are responsible for around 40% of total 
primary energy consumption and approximate 30% of related 
total CO2 emission in the worldwide (Costa et al. 2013). 
Building energy conservation methods should be taken 
into consideration to reduce the CO2 related environmental 
impacts and achieve sustainable development (Zhao and 
Magoulès 2012). The energy consumption of heating 
ventilation and air-conditioning (HVAC) systems takes up 
near 40% of total building energy use (DOE 2011; Dong  
et al. 2014). Thus, energy-efficient HVAC system will con-
tribute to significant energy saving in the building sectors 

and environmental-friendly development (Niu et al. 2018). 
The application of supervisory control (optimal control) in 
the operation optimization of HVAC system is considered 
as one of promising building energy conservation methods 
(Wang and Ma 2008). The basic goal of the supervisory and 
optimal control is to minimize the energy consumption 
or operating costs on the basis of satisfied indoor comfort 
level and healthy environment in occupant areas (Jung  
and Jazizadeh 2019). The essence of the supervisory and 
optimal control in HVAC system is the building operation 
optimization. For the adaptation of changeable outdoor 
weather and indoor loads, the dynamic adjustments of 
setting values and operating rules in the building system to 
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improve building energy efficiency has been the research 
focus of building operation optimization (Dong et al. 2018; 
Gunay et al. 2019).  

The supervisory control methods applied in HVAC 
systems can be divided into 4 categories: model-based 
method, hybrid method, performance map-based method 
and model-free method (Wang and Ma 2008). Many 
researchers have studied the model-based supervisory control 
method in HVAC systems. House and Smith (1995) used 
physical model-based supervisory control methods to optimize 
the air-conditioning (AC) system. Li et al. (2010) used 
gray-box model-based method to develop and validate a 
dynamic zone model to achieve energy saving and indoor 
environment improvement. In addition, Curtiss et al. (1994) 
developed artificial neural networks (ANNs) black-box 
model-based supervisory control to minimize the energy 
consumption of HVAC system. Although lots of studies on 
the model-based supervisory control method have been 
done, some drawbacks still exist. It is time-consuming and 
labor-consuming to establish and validate the model based 
on the model-based method, hindering its application in 
practical engineering projects (Killian and Kozek 2016). In 
addition, the quality of the control strategy depends heavily 
on the quality of the model. Once the model deviates from 
the real situation of the building or HVAC system, the quality 
of the control strategy is unconvincing (Široký et al. 2011). 
Besides, the calculation of model predictive control (MPC) is 
complex and difficult, having much higher requirements 
for hardware equipment (Goyal et al. 2013).  

Compared to model-based supervisory control method, 
model-free method can directly obtain the control strategy 
without establishing the mathematical model of building 
HVAC system (Baldi et al. 2015). Model-free supervisory 
control mainly includes expert system-based and reinfor-
cement learning (RL) based control methods (Ling and 
Dexter 1994). According to Ling and Dexter (1994), expert 
system-based control method has the characteristics of 
simple structure and strong stability, but its parameters 
setting depends heavily on the prior engineering experience 
of engineers, rather than on the optimization algorithm. 
Thus, expert system-based control method has weak dynamic 
adjustment. 

According to Mason and Grijalva (2019), RL has been 
widely used in practical engineering optimization and control 
areas. Compared to the characteristics of model-based control 
method, RL-based model-free strategy is a data-driven control 
method, using feedback information to update the control 
strategy after constantly trying and minimize the dependence 
on prior knowledge (Doll et al. 2016; Mbuwir et al. 2017; 
Russek et al. 2017; Halperin et al. 2019). Many researchers 
have applied RL control strategy in the operation optimization 
of building HVAC system. Liu and Henze (2006) used the  

RL to optimize the operation of active and passive building 
thermal storage inventory. They found that classic 
Q-Learning algorithm has the drawback of inefficiency in 
high-dimensional spatial learning. Barrett and Linder (2015) 
proposed an auto-control method for HAVC system based 
on RL. This auto-control method can realize the intelligent 
temperature control in the controlled areas by learning the 
characteristics of HVAC equipment and occupant habits. 
Costanzo et al. (2016) applied RL controller to building 
demand response, and concluded that the application of  
RL control strategy can achieve a 90% of the mathematical 
optimum solution. Urieli and Stone (2013) and Ruelens  
et al. (2015) applied the model-based and model-free RL 
algorithms to the HVAC system with heat pump, respectively. 
The results show that the application of both two algorithms 
could improve the operating efficiency of heat pump, 
achieving significant energy savings. Li and Xia (2015) 
proposed multi-scale RL to accelerate the process of solving 
optimal control strategies. They concluded that the multi- 
scale RL control strategy has advantages in energy saving 
and comfort. In addition, Wei et al. (2017) proposed the 
deep RL-based control method of HVAC system and 
validate the scalability of deep RL controller. They found 
that deep RL controller suffers from the problem of too 
long training time.  

Above all, the related researches on RL mainly focus on 
the validation of the performance of RL in different operation 
optimization scenarios of HVAC systems. However, the 
systematic combing of the application of RL controller is 
not well addressed as well as the development process of 
RL supervisory controller. In addition, that the reliability 
reinforcement of RL controller and the decrease of time 
required for controller learning process are still the main 
research direction at present and should be further studied. 
In this paper, RL algorithm is applied to the operation 
optimization of AC system, while an innovative RL-based 
model-free control strategy combining rule-based and RL-based 
control methods is proposed as well as complete application 
process. The new RL-based controller is applied in a variable 
air volume (VAV) AC system for a single-storey office 
building as a case study to validate its performance. 

2 Reinforcement learning theory 

2.1 Reinforcement learning introduction 

Reinforcement learning (RL) is a special and adaptive 
machine learning method with environmental feedback as 
input, while its main principle is to interact with the 
environment and optimize the decision-making based on 
the feedback signal of evaluation (Gao et al. 2004; Jaafra  
et al. 2019). Figure 1 shows the sketch map of the RL. The  
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Fig. 1 Sketch map of RL 

mathematical description of the RL problems is Markov 
Decision Process (MDP), including state space S, action 
space A, transition function P and reward function R 
(Costanzo et al. 2016). At each decision moment t, the agent 
selects the execution action at  A. After one time step Δt, 
the environment E is converted from state st to st+1, while the 
agent calculates the reward rt during this time step according 
to the reward function at time t + 1. The transition function 
describes the execution of action at  A when the environment 
state of the agent is st at the time t. In addition, the transition 
function also expresses the possibility that the environment 
state of the agent is converted to st+1 when the random 
disturbance is wt. MDP has the Markov property, that is, 
the reward rt and environment state st+1 at the next moment 
are only relevant to the current state st as well as the current 
action at (Gao  et al. 2004; Han et al. 2019). The goal of 
the RL is to obtain a strategy function a = π(s), mapping the 
relationship between state and control action, and maximize 
the cumulative reward by executing the strategy functions 
(Han et al. 2019). Under this circumstance, this strategy 
function is the optimal control strategy. RL method is goal- 
oriented and good at solving optimization problems of 
decision chains under unknown environment (You et al. 
2019).  

2.2 Model-free learning algorithms 

In the RL tasks, the transition probability and the reward 
function of the environment are often unknown or hard to 
be obtained. A model-free learning algorithm need not build 
up the environmental model, while Q-Learning algorithm is 
one of the model-free learning algorithms (Halperin 2019).  

Q-Learning algorithm is a RL method for solving Markov 
decision problems with incomplete information (Cheng  
et al. 2016). The object of this algorithm is the value function 
of state-action pairs, namely Q-value function, expressed 
by Q(s, a). The Q-value function represents the cumulative 
reward awarded to the system by executing action a under 
state s. Tabular Q-Learning refers to an algorithm storing 
Q-value of finite state-action pairs in a table (Mason and 
Grijalva 2019; You et al. 2019). Q-value is random in the 
initial stage, while the samples in the form of tuples (s, a, r, 
sʹ) are collected during the continuous interaction between 

agent and the environment. Equation (1) is used to update 
the Q-value in the table. 

( ) ( ) ( ) ( ) ( )( )a A sQ s a α R s γ Q s a Q s amaxΔ , , ,¢ ¢Î ¢ -¢= +       (1) 

( ) ( ) ( )Q s a Q s a Q s a, , Δ ,¬ +  

where A(s) is a set of actions that can be taken in state s; sʹ 
is the next state after executing action a under state s.  

The reward discount factor γ  [0, 1] indicates the 
influence degree of current actions on future rewards 
(Mason and Grijalva 2019; Han et al 2019). There are many 
uncertainties during the operation optimization of HVAC 
system, such as the decrease of prediction accuracy of 
weather conditions with the increase of the forecast time 
from the current time. The uncertainty will accumulate in 
the time dimension, so the γ discount cumulative rewards 
are adopted as the long-term cumulative reward (Jaafra et al. 
2019). When γ equals to 0, the agent only takes immediate 
rewards into consideration. However, when γ equals to 1, 
the agent considers both equal importance to long-term 
rewards as to immediate rewards. The learning rate α   
(0, 1) is the updating speed of Q-value. Larger learning rate 
can improve the convergence speed of the algorithm, while 
smaller learning rate can improve the stability of the algorithm 
(Watkins and Dayan 1992). Temporal-Difference term denotes  
the difference between the real value a A sr γ Q s amax

( ) ( , )Î¢ ¢ ¢ ¢+  and  
the estimated value Q(s, a) (Sutton and Barto 1998; Brémaud 
1999). However, the real value also includes the estimated 
value Q s a( , )¢ ¢  of the next state-action pair. Q-Learning 
algorithm makes the estimated value closer to the real value 
by continuously collecting samples and updating the 
Q-value (Watkins and Dayan 1992).  

In the learning process, agents acquire experience con-
stantly, and then they get strategies with certain performance 
after learning for a period of time. In addition, the parts 
excluding the existing strategies need to be explored to  
test the possibility of strategies improvement (Defazio and 
Graepel 2014). According to Costanzo et al. (2016), -greedy 
exploration is a widely used exploration method for balancing 
exploration and utilization. The agent selects an action with 
the random possibility of  at each decision-making moment, 
and selects the action with the highest Q-value with the 
possibility of 1 −  (Defazio and Graepel 2014). The value of 
 defines the proportion of agent exploration. After enough 
exploration, the agent stops exploring and implement the 
optimal control strategy according to the greedy control 
criterion (Costanzo et al. 2016). 

2.3 Value function approximation 

Tabular Q-value algorithm is a MDP for discrete state and 
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action space; however, tabular Q-Learning will come across 
curse of dimensionality because many optimization decision- 
making problems in practical engineering have large-scale 
or continuous state and action space (Nguyen et al. 2019). 
In order to solve this problem, generalization methods (e.g. 
parametric function approximation and non-parametric 
function approximation) are usually used for Q-value function 
approximation in RL. Artificial neural networks (ANNs) is 
one of typical approximation methods of parametric function, 
while regression Tree is one of typical approximation methods 
of non-parametric function (Baird 1995). Ernst et al. (2005) 
studied the performance of ensemble learning method in 
estimating value function, and then found the extreme 
random tree performed the best, which was suitable for 
estimating the Q-value function. In the use of extreme 
random tree, the number of trees and the minimum number 
of samples for spilt nodes are required to control the model 
scale. 

2.4 Batch RL algorithm 

Q-Learning algorithm is an online algorithm. Once a sample 
is collected, the online algorithm immediately uses this 
sample to update the Q-value function (Ernst et al. 2005). 
However, two problems exist in updating the Q-value 
function by using Q-Learning algorithm. On the one hand, 
the updating of sequential samples may cover the updating 
of Q-value of previous samples to some extent. On the other 
hand, each sample is used only once in the on-line algorithm 
causing low learning efficiency (van Hasselt 2010). However, 
these two problems of on-line algorithm can be solved by 
adopting batch RL algorithm (Lange et al. 2012). According 
to Huang (2017), the basic principle of batch RL is experience 
replay. The experience here is a sample in the form of 
quaternion (s, a, r, sʹ), while the method of repeated use of 
experience is experience replay. Compared with the online 
algorithm, batch RL algorithm has higher data utilization 
efficiency and stability.  

In this paper, fitted Q-iteration algorithm is selected as 
the batch RL algorithm to solve the operation optimization 
problem of building HVAC system. The fitted Q-iteration 
algorithm is a common batch RL method proposed by Ernst 
et al. (2005), which can improve data utilization efficiency and 
enhance algorithm stability by value function approximator 
and experience repay. The experience set D is built up by 
Eq. (2). The algorithm continually iterates and establishes 
the training data for Q-value function estimation, while the 
input data of training data are all state-action pairs (sn, an) in 
experience set D and the output data are calculated according 
to Eq. (3). 

( ){ } D
n n n n nD s a r s #

1, , ,
=

¢=                            (2) 

( ) ( ) ( )( )n nM n n n M n na A sQ s a r γ sQ amax
1

ˆ, ,¢ ¢ -Î ¢ ¢= +               (3) 

where 1
ˆ

MQ -  represents the value function approximator 
obtained by the algorithm in the last iteration.  

Equation (3) demonstrates that the Q-value of each 
state-action pair is obtained by the sum of the state-action 
corresponding rewards and the optimal Q-value of next state 
calculated by the value function approximator obtained from 
the last iteration. Table 1 shows the detailed fitted Q-iteration 
algorithm process.  

Table 1 Fitted Q-iteration algorithm process 

1. Initialize Q-valued function approximator (QVFA); 
2. Set the update condition of QVFA; 
3. Obtain the current world state s; 
4. Repeat the following process: 

a) Calculate Q-values of different actions under state s; 
b) Select the action a based on the exploratory strategy, and keep 

action a on until the next decision-making moment; 
c) Get the current time state sʹ and the reward r within the control 

time step, and store the (s, a, r, sʹ) to the experience set; 
d) Judge and determine if the Q-value function approximator 

needs to be updated; 
i. Construct data set for updating QVFA by using experience

set ( ){ }#
1, , , D

n n n n nD s a r s
=

¢= ; 

ii. Calculate the corresponding Qn of each state-action pair 
according to Eq. (1);  

iii. Update the QVFA by the data set ( ){ }#
1, , D

n n n ns a Q
=

. 

e) Assign sʹ to s. 

3 Application of RL algorithm in the operation 
optimization of HVAC system 

Many researches have focused on the appliction of RL in 
the HVAC syetm operation optimization. The operation 
methods of HVAC system entirely based on RL algorithm 
suffer from the problems of long learning time and poor 
reliability (Wei et al. 2017). Figure 2 shows the schematic 
map of the rule-assisted RL application in the operation 
optimization of HVAC system in this study. The simulation 
model of the building HVAC system is not needed, while  

 
Fig. 2 The schematic map of HVAC system operation optimization 
based on rule-assisted RL 
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rule-based control method and RL algorithm is combined. The 
rule-based control method transforms engineering experience 
into the rule of conditional judgement statement form, and 
then determines the reasonable interval of system control 
variable under various working conditions. Meanwhile, RL 
algorithm collects and analyzes the operational data feedback 
from the HVAC monitoring system and continuously improves 
the control strategy, and then determines the optimal set value 
of the system control variables under various working 
conditions.  

Rule-based control method can be effectively combined 
with RL-based control method. Rules can be used to optimize 
the operation of HVAC systems based on RL in two stages. 
In the initial stage of HVAC system operation, the data can 
be collected according to the rule-based control method for 
the initial RL controller so that the controller can quickly 
get a more reasonable control strategy and be improved. In 
the exploration stage after initializing the RL controller, the 
exploration space can be reduced by establishing rules, so 
as to ensure the agent avoids damaging the HVAC equipment 
and meet the comfort requirements of the controlled areas 
of the building as far as possible at the same time.  

The combination of rule-based control method and RL- 
based control method can utilize their respective advantages. 
For one side, the engineering experiences can be introduced 
by the rules, reducing the exploration number required by 
RL controller and ensuring the reliability of the learning 
methods. For another side, the dynamic adjustment of 
rule-based control method can be enhanced by RL algorithm. 
This application process of combined control method can be 
divided into four stages in chronological order: preparation 
stage, initial stage, exploration stage and operation stage. 
Table 2 shows the complete flow chart of HVAC system 
operation method based on the combination of rule-based 
control method and RL algorithm.  

4 Application of RL controller in VAV system: a case 
study 

4.1 Background  

RL controller is applied in a single-storey office building 
with total AC area of 475 m2 and with a VAV system as a 
case study. RL controller is responsible for adjusting the air 
supply volume and optimizing the set value of the air supply 
volume in the controlled area. The goal of the application 
of RL controller is to reduce the operating cost of the AC 
system as much as possible while meeting the indoor comfort 
requirement.  

Regulating the air supply volume in the controlled area 
belongs to the typical building environment control. Killian  

Table 2 Operation process of HVAC system based on rule-based 
control method and RL algorithm 

Preparation stage: 
1) Model the operation optimization of HVAC system as a MDP;
2) Set the rule-based control method used in the initial stage, 

defining rules to reduce exploration space; 
3) Determine the exploration strategies and the duration of the 

exploration stage, select the value function approximator, and 
set the discount factor and the update condition of the value 
function approximator. 

Initial stage: 
4) Run the Rule-based control HVAC system and collect initial 

samples. 
Exploration stage: 

5) Initialize value function approximator using data collected in 
initial stage; 

6) Get the current state s; 
7) Repeat the following processes: 

a) Calculate Q-value of different actions under state s; 
b) Select action a based on the exploration strategy and 

execute action a until the next decision-making moment;
c) Get the current state sʹ and the reward r, and store (s, a, r, 

sʹ) into the experience set; 
d) Judge and determine whether the Q-value function 

approximator needs to be updated; If so, update the value 
function approximator using the data in the experience 
set; or if not, execute the next step; 

e) Assign sʹ to s. 
Operation stage: 

8) Get the current state s; 
9) Repeat the following processes: 

a) Calculate Q-value of different actions under state s; 
b) Select action a based on the exploration strategy and 

execute action auntil the next decision-making moment;
c) Get the current state sʹ and the reward r, and store (s, a, r, 

sʹ) into the experience set; 
d) Judge and determine whether the Q-value function 

approximator needs to be updated; If so, update the value 
function approximator using the data in the experience 
set; or if not, execute the next step; 

e) Assign sʹ to s. 

 
and Kozek (2016) compared three existing control methods: 
proportional-integral-derivative (PID) control, PID control 
with external temperature compensation (PIDc) and model 
predictive control (MPC), and then concluded that both 
application of PID and PIDc cannot meet requirements of 
thermal conditions over a period of time. MPC can use the 
forecasted future outdoor weather changes and be combined 
with building AC system model to determine the current 
optimal control strategy by rolling optimization. Although 
MPC seems better than PID control in terms of control 
strategy, an accurate and efficient simulation model in the  
MPC is a prerequisite but hard to obtain in the building AC 
system. Thus, the focus of this VAV case is on achieving 
effective building environment control by using measurable 
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data, predicting the future changes of outdoor weather and 
strengthening learning algorithm without the model.  

4.2 Preparation stage 

According to the operation process of AC system based on 
rule-based control method and RL algorithm in Table 2, 
the first step in the preparation stage is to establish the 
MDP model for the operation optimization. The influencing 
factors on the operating costs of the AC system in the VAV 
case is firstly analyzed in Fig. 3. On this basis, the action is 
defined, namely the controlled variable, as the set value of 
the air supply volume in the controlled area in this case. The 
minimum air supply volume is determined as the fresh air 
volume needed by indoor personnel, while the maximum 
air supply volume is determined as six times of indoor 
ventilation. In addition, the action interval is divided into 
four levels {a1, a2, a3, a4} with control time step of 0.2 h.  

Then, the time, outdoor weather conditions and tem-
perature of the controlled area are selected as the state of the 
VAV case. Time is used to reflect time-related information 
such as indoor thermal disturbance and electricity tariff in 
different time. Outdoor weather conditions are determined 
by the current outdoor temperature, current outdoor solar 
radiation and predicted temperature changes in the next 
hour. In addition, the temperature of controlled area is 
divided into two parts, including indoor air temperature and 
wall temperature. The wall temperature is used to reflect 
the building thermal storage, but it cannot be measured in 
practical project. Thus, the difference between the average 
indoor air temperature of the past four time steps and   
the current indoor air temperature is used in this case to 
approximate the building heat storage situation. In addition, 
the controller can also be provided with more complete 
information when only one dimension of the state value is 
added. 

 
Fig. 3 Influencing factors of operating costs in VAV system 

( ) ( )t t t tr s a T1 1 1cost , penalty- - -=- +                (4) 

( )

( )
( )

2
lower bound lower bound

2
upper bound upper bound

lower bound upper bound

penalty

if

if

0 if

t

t t

t t

t

T

β T T b T T

β T T b T T

T T T

ìï- - + <ïïïï= - - + >íïïï £ £ïïî

  

(5) 

At last, the reward function is defined in Eqs. (4) and (5) 
and divided into two parts. The first part is to control the 
energy consumption in the time step, which is the sum of 
the energy consumption of chillers, chiller water pumps, 
cooling water pumps, cooling tower and fans. Table 3 shows 
the electricity tariff in different time. The other part is the 
penalty when the indoor temperature excessed the comfort 
range. According to the Chinese design code of heating, 
ventilation and air conditioning for civil building (MOHURD 
2012), the indoor temperature in Winter should be kept 
between 24 °C and 28 °C; Thus, 24 °C and 28 °C are selected 
as the lower and upper limit temperature, respectively.  

The second step in the preparation stage is to set the 
rule-based control method used in the initial stage and 
define rules to reduce the exploration space. In the VAV 
case, the operation mode of start-stop control is adopted  
in the initial stage. Two rules are defined to ensure that 
system operation meets the comfort constraints. When the 
temperature in the controlled exceeds 27.5 °C, the supply 
air volume is set to the maximum and maintained to the 
next control step to avoid further temperature rising.   
In addition, when the indoor air temperature is less than 
24.5 °C, the air supply volume is set to the minimum and 
maintained to the next control step to reduce energy con-
sumption. These two rules are used in both the exploration 
and operation stages, aiming to accelerate the learning 
process of RL, avoiding meaningless explorations and 
improving the reliability of the system operation.  

The third step in the preparation stage includes deter-
mining the exploration strategies and the duration of the 
exploration stage, selecting the value function approximator, 
setting the discount factor and updating the value function 
approximator conditions. The -greedy selection action is  

Table 3 Electricity price information during on-peak and off-peak 
time 

Period
Electricity price 
(RMB / kWh) Time 

Off-peak 0.28 22.00 – 6.00 

On-peak 1.17 8.00 – 11.00; 13.00 – 15.00; 18.00 – 21.00 

Other 
period 0.72 6.00 – 8.00; 11.00 – 13.00; 15.00 – 18.00; 

21.00 – 22.00 
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selected as exploration strategy, expressed as Eq. (6). It is 
possible to perform more explorations at the beginning of the 
exploration stage and collect samples of different state-action 
pairs. Using the -greedy selection action in the operation 
of the first year is set as the exploration stage, while the AC 
system will be transferred to the operation stage from the 
second year onwards.  

( )d0max Δ , 0.1= - ´                            (6) 

where 0 is 0.5; Δ is 0.02; d is operating days in the 
exploration stage.  

Neural network is used as Q-value function approximator. 
There are 3 hidden layers in total, and the number of neurons 
in each hidden layer is 32, 64 and 32, respectively. The first 
two hidden layers use the rectified linear unit (ReLU) as the 
activation function, while the last hidden layer uses a linear 
unit (Linear) as the activation function.  

The number of micro-batch data is set to 500. The 
discount factor γ is set to 0.5, while the value function 
approximator is updated once per day. When the indoor 
temperature violates the comfort constraint condition, it 
means that the control effect of the enhanced learning con-
troller is still ideal. Thus, once the room temperature violates 
the comfort constraint, the value function approximator 
would be updated immediately. 

4.3 Simulation model 

The performance of RL controller is tested by Transient 

System Simulation (TRNSYS) Program software in this case. 
Modularization idea is adopted in the TRNSYS to establish 
simulation model, while each module represents a device 
or process. In the process of building TRNSYS system model, 
users only need to comb the input and output of each com-
ponent, and then connect the components correctly to form 
a complete system and set the parameters of each components 
reasonably. The building model in the TRNSYS can reflect 
the basic mechanism of building thermal response, thus 
TRNSYS software is used in this case to analyze the system 
operation characteristics. In addition, Python language is 
also used to write RL controller. TRNSYS is responsible for 
building and AC system simulation, while co-simulations 
between TRNSYS and Matrix Laboratory (MATLAB) are 
conducted by using Internet socket through user datagram 
protocol (UDP). Figure 4 shows the co-simulation diagram. 

Table 4 shows the parameters set of the components  
in the TRNSYS, while Fig. 5 shows the schedule setting for 
the occupant, lighting and equipment. The cooling season 
is from 1 June to 20 September. In addition, the simulation 
model of building AC system in TRNSYS is shown in Fig. 6. 
In this case, the meteorological parameters are simulated 
by the typical meteorological year (TMY) data of Shanghai, 
China. The predicted temperature value is calculated by 
adding the non-normality random error N(0, 0.2) to the real 
temperature.  

4.4 The comparison of control effect 

Figure 7 shows the temperature variation in controlled area  

 
Fig. 4 The co-simulation diagrams 

Table 4 The parameter of the components in the TRNSYS 
Parameter Value Parameter Value 

External wall  0.888 W/(m2·K) Building operating time 8.00–18.00  

Roof  0.638 W/(m2·K) Set indoor air supply temperature 15 °C U-value 

External windows 2.73 W/(m2·K) Per capita fresh air volume 30 m3/(h·person) 

Personnel 0.25 person/m2 Centrifugal refrigeration unit COP 5 

Equipment 20 W/m2 Chilled water pump Variable frequency Density 

Lighting 11W/m2 Cooling water pump Constant frequency 
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Fig. 5 The schedule setting for the personnel, lighting and 
equipment 

with RL controller during a part of continuous operation 
stages. With the continuously changing of outdoor tem-
perature, the RL controller can ensure that the comfort 
requirement can be met in the vast majority of the operation 
period. In order to quantify the control effect of RL controller, 
the rule-based control strategy (RBC) similar to start-stop 
control and PID controller with fixed set temperature are 
selected as the reference control strategies and comparison 
objects. The rules of set temperature limit in the RBC is 
the same to that in RL controller. The set temperature of 
the PID controller is 26 °C, and the indoor temperature is 
stabilized by adjusting the air supply volume. 

Figure 8 shows the temperature variation of the controlled 
area in application of reference strategies. For both RBC and 
PID controllers, the temperatures in the controlled area 
meet the comfort requirements in most operation period. In 

Fig. 6 The simulation model of building and AC system in TRNSYS 

 
Fig. 7 Temperature variation in controlled area with RL controller during operation 
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the use of PID controller, the temperature of the controlled 
area can be kept around the set value 26 °C at a small 
fluctuation. In the use of RBC strategy, the temperature in 
the controlled area fluctuates between 24 °C and 28 °C. 

The annual operating costs of the AC system and the 
comfort of the controlled area are statistically compared in 
the three control strategies (RBC, PID controller and RL 
controller). Figure 9 shows the annual operating costs of 
RBC, PID controller and RL controller, while Fig. 10 shows 
the indoor comfort level under three control strategies.  
In the x-axis of Fig. 9 and Fig. 10, “Y” is the abbreviation  
of year. “Y1” and “Y2” represent the first and second year, 
respectively, and so on. 

As shown in Fig. 10, during the exploration stage in the 
first year, the percentage of non-comfortable time increases 
as the RL controller continually attempts to update the 
strategies. However, in the operation stage, the RL controller 
can utilize the learned experience and has better performance 
than the reference strategy. As shown in Fig. 9, compared 
to RBC and PID controller, RL controller can reduce the  

 
Fig. 9 Annual operating costs of RBC, PID controller and RL 
controller 

 
Fig. 10 Percentage of non-comfortable time in the control strategies 
of RBC, PID and RL 

operating costs by more than 7% and 4.5%, respectively 
under the circumstance of slightly improving the indoor 
comfort level. In addition, as the runtime progresses, the RL 
controller can further improve the control strategy. Both 
the operating cost and the percentage of non-comfortable 
time reach the minimum in the fourth year applying RL 
controller. Thus, Fig. 11 only shows the comparison of energy 
consumption in the AC system with RBC, PID controller 
and RL controller in the fourth year. Compared to RBC 
and PID controller, the application of RL controller in the 
fourth year can reduce the cooling energy consumption 
and transmission and distribution energy consumption of 
the AC units. Compared to the application of RBC and PID 
controller in the AC system, the total energy consumption 
reduced by 7.7% and 4.7%, respectively.  

4.5 Multi-zone air supply volume control 

Performance of RL controller in multi-area air supply volume  

 
Fig. 8 Temperature variation of the controlled area using reference strategies 
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Fig. 11 Comparison of energy consumption by item in the control 
strategies of RBC, PID and RL 

control should be further analyzed. The partition of the 
model is mainly determined by the room function, the air 
distribution form and the room orientation. Because the 
building area in this VAV case is small, it is not partitioned 
inside and outside. As shown in Fig. 12, the controlled area 
is the single area simulation is converted to the set partition 
form in this VAV case. 

When applying RL controller to the multi-zone air supply 
volume control, the preparatory work in the preparation 
stage is roughly the same as that for single zone air supply 
volume control. The differences are the modification of  
the state, the action and the reward. The temperature of 
controlled area in state is changed to the indoor air tem-
perature of each controlled area. The action is the air supply 
at the terminal of each VAV system. The reward is changed 
to the sum of the system energy consumption and the comfort 
penalty of each controlled area. In addition, the exploration 
stage is extended to two years due to the enlargement of the 
state-action space. In the first year, the exploration strategy 
remains unchanged, while in the second year, the -greedy 
exploration strategy with  value of 0.05 is adopted.  

The performance of the RL controller is tested by 
simulation and compared with the reference strategies. 
Figure 13 shows the performance comparison of different 
control strategies (RBC, PID and RL controller) for multi- 
zone air supply volume control. In the x-axis of Fig. 13, the 
“Y” is the abbreviation of year. “Y1” and “Y2” represent  
the first and second year, respectively, and so on. In the two 
reference strategies, the PID controller can reduce the 
operating cost by 3% compared with RBC, while the comfort 
performance is similar. Thus, PID controller is used as the 
comparison object in the VAV case. Compared with the 
PID controller, the application of RL controller reduces the 
operating cost by about 4% in the first three years, but  

 
Fig. 12 Building partition  

 
 

 
Fig. 13 Performance comparison of different control strategies for 
multi-area air supply volume  

increases the non-comfortable time. During the following 
two years of RL controller operation, the operating cost 
reduces by 2.6% with similar non-comfortable time. However, 
when the operation time of RL controller is more than 6 years, 
it performs better in terms of non-comfortable time, and 
reduces the operating cost by 2.7% to 4.6%.  

4.6 Discussion and analysis 

When solving the problem of optimal control of building 
environment using VAV AC system, it is necessary to take 
full consideration of building dynamic thermal response 
characteristics, AC system performance characteristics, indoor 
thermal disturbance and outdoor weather conditions, so  
as to determine the set value of air supply volume in the 
controlled area within each control step. In the studied 
VAV case, the operation strategy of the AC system based 
on RL is applied. All the above information and feedback 
signal of control effect are provided to the RL controller. 
The exploration learning ability is utilized to summarize the 
system operation experience and continuously improve the 
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control strategy. In the VAV system case, the RL controller 
keeps the temperature of the controlled are to a higher level 
in the comfort zone and reduces the energy consumption of 
cooling, transmission and distribution of the system, thereby 
the operating costs. 

For the air supply of single zone, after one-year 
exploration learning, the performance of RL controller   
is better than that of reference strategies (RBC and PID 
controller) in terms of both energy cost and non-comfortable 
time of AC system. For the air supply of multi-zone, com-
pared to the reference cases, although the operating costs  
of the AC system with RL controller reduce significantly in 
the first four years, the non-comfortable times increase to 
varying degrees due to the obvious increase of state-action 
space in the first two-year exploration stage. During the 
two-year exploration stage, the non-comfortable time 
percentage is much high, while another two-year buffer stage 
is given to reduce the percentage. Actually, the non-comfortable 
time percentage continues to decrease during the first 4 years. 
In the following two years (years 5 to 6), compared to the 
reference cases, the application of RL controller in AC system 
can maintain the approximate non-comfortable time level, 
but reduce the energy costs of AC system. From the seventh 
year, the performance of RL controller is much better than 
that of reference cases in aspect of both non-comfortable 
time and operating costs of AC system. Thus, in the long 
term, RL controller can perform better than the reference 
control methods in both comfort degree and operating 
costs after exploration learning phase (including another 
2-year buffer stage). In addition, RL controller can 
continuously improve control strategy as time goes on; 
however, the exploration cost will keep increasing with the 
increase of operation problem scale. Thus, RL controller has 
more advantages and practical application value in small-scale 
operation optimization problems instead of big-scale ones. 

Currently, the performance research of RL controller 
on the operation optimization of AC system is only in 
theoretical and simulation research phase, which has not 
been validated on the actual operating AC systems. In addition, 
the results are may not be generalized for different AC 
systems. Thus, future works should be focused on applying the 
RL controller into different AC systems to analyze respective 
optimization performance, and validating its optimization 
performance on the actual AC systems. 

5 Conclusions 

RL is considered as a promising model-free supervisory 
control method to optimize HVAC system operation and 
achieve energy saving. Thus, RL algorithm is applied to the 
operation optimization of AC system in this paper, while 
an innovative RL-based model-free control strategy combining 

rule-based and RL-based control methods is proposed as 
well as complete application process. The new RL-based 
controller is applied in a VAV AC system for a single-storey 
office building as a case study to validate the performance 
of the RL-based controller. The RBC and PID controller are 
selected as the reference control strategies. The conclusions 
are shown as follows: 
1) For the air supply of single zone, the RL controller performs 

the best in terms of energy cost and non-comfortable 
time after one year of exploration learning. Compared 
with RBC and PID strategies, the use of RL controller can 
reduce the total energy consumption by 7.7% and 4.7%, 
respectively. 

2) For the air supply of multi-zone, the performance of RL 
controller begin to outperform the reference strategies 
after four-year studying, including two-year exploration 
stage and two-year buffer stage. From the seventh year 
on, the RL controller performs much better in terms  
of both non-comfortable time and operating costs of AC 
system than that of reference strategies. The operating 
cost is reduced by 2.7% to 4.6% compared with the 
reference strategies.  

3) In the long term, RL controller can perform better than 
the reference control methods in both comfort degree 
and operating costs after exploration learning phase in 
the multi-zone application. 
Also, some limitations should be mentioned that RL 

controller is more suitable for small-scale operation 
optimization problems instead of big-scale ones due to the 
exploration cost increase with the increase of operation 
problem scale. In addition, the results in this paper may not 
be generalized for different AC systems. Thus, future works 
should be done to apply RL controller to big-scale operation 
optimization problems and different AC systems to validate 
their respective optimization performances.  
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